Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0097223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37909728

RESUMO

IMPORTANCE: The current view is that the default pathway of Kaposi's sarcoma-associated herpesvirus (KSHV) infection is the establishment of latency, which is a prerequisite for lifelong infection and viral oncogenesis. This view about KSHV infection is supported by the observations that KSHV latently infects most of the cell lines cultured in vitro in the absence of any environmental stresses that may occur in vivo. The goal of this study was to determine the effect of hypoxia, a natural stress stimulus, on primary KSHV infection. Our data indicate that hypoxia promotes euchromatin formation on the KSHV genome following infection and supports lytic de novo KSHV infection. We also discovered that hypoxia-inducible factor-1α is required and sufficient for allowing lytic KSHV infection. Based on our results, we propose that hypoxia promotes lytic de novo infection in cells that otherwise support latent infection under normoxia; that is, the environmental conditions can determine the outcome of KSHV primary infection.


Assuntos
Infecções por Herpesviridae , Subunidade alfa do Fator 1 Induzível por Hipóxia , Hipóxia , Humanos , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8 , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sarcoma de Kaposi , Latência Viral
2.
Microbiol Spectr ; 10(5): e0232222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173315

RESUMO

Over the last 2 years, several global virus-host interactome studies have been published with SARS-CoV-2 proteins with the purpose of better understanding how specific viral proteins can subvert or utilize different cellular processes to promote viral infection and pathogenesis. However, most of the virus-host protein interactions have not yet been confirmed experimentally, and their biological significance is largely unknown. The goal of this study was to verify the interaction of NSP5, the main protease of SARS-CoV-2, with the host epigenetic factor histone deacetylase 2 (HDAC2) and test if HDAC2 is required for NSP5-mediated inhibition of the type I interferon signaling pathway. Our results show that NSP5 can significantly reduce the expression of a subset of immune response genes such as IL-6, IL-1ß, and IFNß, which requires NSP5's protease activity. We also found that NSP5 can inhibit Sendai virus-, RNA sensor-, and DNA sensor-mediated induction of IFNß promoter, block the IFN response pathway, and reduce the expression of IFN-stimulated genes. We also provide evidence for HDAC2 interacting with IRF3, and NSP5 can abrogate their interaction by binding to both IRF3 and HDAC2. In addition, we found that HDAC2 plays an inhibitory role in the regulation of IFNß and IFN-induced promoters, but our results indicate that HDAC2 is not involved in NSP5-mediated inhibition of IFNß gene expression. Taken together, our data show that NSP5 interacts with HDAC2 but NSP5 inhibits the IFNß gene expression and interferon-signaling pathway in an HDAC2-independent manner. IMPORTANCE SARS-CoV-2 has developed multiple strategies to antagonize the host antiviral response, such as blocking the IFN signaling pathway, which favors the replication and spreading of the virus. A recent SARS-CoV-2 protein interaction mapping revealed that the main viral protease NSP5 interacts with the host epigenetic factor HDAC2, but the interaction was not confirmed experimentally and its biological importance remains unclear. Here, we not only verified the interaction of HDAC2 with NSP5, but we also found that HDAC2 also binds to IRF3, and NSP5 can disrupt the IRF3-HDAC2 complex. Furthermore, our results show that NSP5 can efficiently repress the IFN signaling pathway regardless of whether viral infections, RNA, or DNA sensors activated it. However, our data indicate that HDAC2 is not involved in NSP5-mediated inhibition of IFNß promoter induction and IFNß gene expression.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , SARS-CoV-2 , Histona Desacetilase 2/metabolismo , Interleucina-6 , Transdução de Sinais , Interferon beta/genética , Interferon beta/metabolismo , Interferons , Proteínas Virais/genética , Antivirais/farmacologia , Peptídeo Hidrolases/metabolismo , DNA , RNA , Proteases Virais , Interferon Tipo I/metabolismo
3.
J Virol ; 95(11)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692209

RESUMO

It is still largely unknown what host factors are involved in controlling the expression of the lytic viral gene RTA during primary infection, which determines if Kaposi's sarcoma-associated herpesvirus (KSHV) establishes latent or lytic infection. We have recently identified the histone demethylase KDM2B as a repressor of RTA expression during both de novo KSHV infection and latency based on an epigenetic factor siRNA screen. Here, we report that surprisingly, KDM2B overexpression can promote lytic de novo infection by using a mechanism that differs from what is needed for its repressor function. Our study revealed that while the DNA-binding and demethylase activities of KDM2B linked to its transcription repressive function are dispensable, its C-terminal F-box and LRR domains are required for the lytic infection-inducing function of KDM2B. We found that overexpressed KDM2B increases the half-life of the AP-1 subunit c-Jun protein and induces the AP-1 signaling pathway. This effect is dependent upon the binding of KDM2B to the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex via its F-box domain. Importantly, the inhibition of AP-1 reduces KDM2B-mediated lytic de novo KSHV infection. Overall, our findings indicate that KDM2B may induce the degradation of some host factors by using the SCF complex resulting in the enrichment of c-Jun. This leads to increased AP-1 transcriptional activity, which facilitates lytic gene expression following de novo infection interfering with the establishment of viral latency.SignificanceThe expression of epigenetic factors is often dysregulated in cancers or upon specific stress signals, which often results in a display of non-canonical functions of the epigenetic factors that are independent from their chromatin-modifying roles. We have previously demonstrated that KDM2B normally inhibits KSHV lytic cycle using its histone demethylase activity. Surprisingly, we found that KDM2B overexpression can promote lytic de novo infection, which does not require its histone demethylase or DNA-binding functions. Instead, KDM2B uses the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex to induce AP-1 transcriptional activity, which promotes lytic gene expression. This is the first report that demonstrates a functional link between SFCKDM2B and AP-1 in the regulation of KSHV lytic cycle.

4.
Virology ; 541: 160-173, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32056714

RESUMO

Unique among human viruses, Kaposi's sarcoma-associated herpesvirus (KSHV) encodes several homologs of cellular interferon regulatory factors (vIRFs). Since KSHV expresses multiple factors that can inhibit interferon (IFN) signaling to promote virus production, it is still unclear to what extent vIRFs contribute to these specific processes during KSHV infection. To study the function of vIRFs during viral infection, we engineered 3xFLAG-tagged-vIRF and vIRF-knockout recombinant KSHV clones, which were utilized to test vIRF expression, as well as their requirement for viral replication, virus production, and inhibition of the type I IFN pathway in different models of lytic KSHV infection. Our data show that all vIRFs can be expressed as lytic viral proteins, yet were dispensable for KSHV production and inhibition of type I IFN. Nevertheless, as vIRFs were able to suppress IFN-stimulated antiviral genes, vIRFs may still promote the KSHV lytic cycle in the presence of an ongoing antiviral response.


Assuntos
Herpesvirus Humano 8/fisiologia , Fatores Reguladores de Interferon/fisiologia , Interferon Tipo I/antagonistas & inibidores , Proteínas Virais/fisiologia , Replicação Viral , Células Cultivadas , Humanos , Interferon Tipo I/biossíntese , Interferon beta/genética , Interferon beta/uso terapêutico , Transdução de Sinais/fisiologia , Ativação Viral
5.
PLoS Pathog ; 16(1): e1008268, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31923286

RESUMO

Establishment of viral latency is not only essential for lifelong Kaposi's sarcoma-associated herpesvirus (KSHV) infection, but it is also a prerequisite of viral tumorigenesis. The latent viral DNA has a complex chromatin structure, which is established in a stepwise manner regulated by host epigenetic factors during de novo infection. However, despite the importance of viral latency in KSHV pathogenesis, we still have limited information about the repertoire of epigenetic factors that are critical for the establishment and maintenance of KSHV latency. Therefore, the goal of this study was to identify host epigenetic factors that suppress lytic KSHV genes during primary viral infection, which would indicate their role in latency establishment. We performed an siRNA screen targeting 392 host epigenetic factors during primary infection and analyzed which ones affect the expression of the viral replication and transcription activator (RTA) and/or the latency-associated nuclear antigen (LANA), which are viral genes essential for lytic replication and latency, respectively. As a result, we identified the Nucleosome Remodeling and Deacetylase (NuRD) complex, Tip60 and Tip60-associated co-repressors, and the histone demethylase KDM2B as repressors of KSHV lytic genes during both de novo infection and the maintenance of viral latency. Furthermore, we showed that KDM2B rapidly binds to the incoming viral DNA as early as 8 hpi, and can limit the enrichment of activating histone marks on the RTA promoter favoring the downregulation of RTA expression even prior to the polycomb proteins-regulated heterochromatin establishment on the viral genome. Strikingly, KDM2B can also suppress viral gene expression and replication during lytic infection of primary gingival epithelial cells, revealing that KDM2B can act as a host restriction factor of the lytic cycle of KSHV during both latent and lytic infections in multiple different cell types.


Assuntos
Infecções por Herpesviridae/genética , Herpesvirus Humano 8/fisiologia , RNA Interferente Pequeno/genética , Antígenos Virais/genética , Antígenos Virais/metabolismo , Epigênese Genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/metabolismo , Transativadores/genética , Transativadores/metabolismo , Latência Viral
6.
Sci Rep ; 8(1): 17778, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542209

RESUMO

Efficient gene delivery technologies play an essential role in the gene functional analyses that are necessary for basic and applied researches. Mosquitoes are ubiquitous insects, responsible for transmitting many deadly arboviruses causing millions of human deaths every year. The lack of efficient and flexible gene delivery strategies in mosquitoes are among the major hurdles for the study of mosquito biology and mosquito-pathogen interactions. We found that Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type baculovirus species, can efficiently transduce mosquito cells without viral propagation, allowing high level gene expression upon inducement by suitable promoters without obvious negative effects on cell propagation and viability. AcMNPV transduces into several mosquito cell types, efficiently than in commonly used mammalian cell lines and classical plasmid DNA transfection approaches. We demonstrated the application of this system by expressing influenza virus neuraminidase (NA) into mosquito hosts. Moreover, AcMNPV can transduce both larvae and adults of essentially all blood-sucking mosquito genera, resulting in bright fluorescence in insect bodies with little or no tissue barriers. Our experiments establish baculovirus as a convenient and powerful gene delivery vector in vitro and in vivo that will greatly benefit research into mosquito gene regulation, development and the study of mosquito-borne viruses.


Assuntos
Baculoviridae/genética , Culicidae/genética , Culicidae/virologia , Mosquitos Vetores/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Vetores de Doenças , Expressão Gênica/genética , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Larva/genética , Larva/virologia , Neuraminidase/genética , Nucleopoliedrovírus/genética , Orthomyxoviridae/genética , Transfecção/métodos , Células Vero
7.
Mol Ther Methods Clin Dev ; 6: 194-206, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28831401

RESUMO

Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

8.
J Virol ; 89(13): 6746-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25878113

RESUMO

UNLABELLED: Dengue virus (DENV) nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane-associated protein, and mutagenesis studies have revealed its significance in viral genome replication. In this work, we demonstrated that NS4B is an N-glycosylated protein in virus-infected cells as well as in recombinant protein expression. NS4B is N glycosylated at residues 58 and 62 and exists in two forms, glycosylated and unglycosylated. We manipulated full-length infectious RNA clones and subgenomic replicons to generate N58Q, N62Q, and N58QN62Q mutants. Each of the single mutants had distinct effects, but the N58QN62Q mutation resulted in dramatic reduction of viral production efficiency without affecting secretion or infectivity of the virion in mammalian and mosquito C6/36 hosts. Real-time quantitative PCR (qPCR), subgenomic replicon, and trans-complementation assays indicated that the N58QN62Q mutation affected RNA replication possibly by the loss of glycans. In addition, four intragenic mutations (S59Y, S59F, T66A, and A137T) were obtained from mammalian and/or mosquito C6/36 cell culture systems. All of these second-site mutations compensated for the replication defect of the N58QN62Q mutant without creating novel glycosylation sites. In vivo protein stability analyses revealed that the N58QN62Q mutation alone or plus a compensatory mutation did not affect the stability of NS4B. Overall, our findings indicated that mutation of putative N-glycosylation sites affected the biological function of NS4B in the viral replication complex. IMPORTANCE: This is the first report to identify and reveal the biological significance of dengue virus (DENV) nonstructural protein 4B (NS4B) posttranslation N-glycosylation to the virus life cycle. The study demonstrated that NS4B is N glycosylated in virus-infected cells and in recombinant protein expression. NS4B is modified by glycans at Asn-58 and Asn-62. Functional characterization implied that DENV NS4B utilizes the glycosylation machinery in both mammalian and mosquito hosts. Four intragenic mutations were found to compensate for replication and subsequent viral production deficiencies without creating novel N-glycosylation sites or modulating the stabilities of the protein, suggesting that glycans may be involved in maintaining the NS4B protein conformation. NS4B glycans may be necessary elements of the viral life cycle, but compensatory mutations can circumvent their requirement. This novel finding may have broader implications in flaviviral biology as the most likely glycan at Asn-62 of NS4B is conserved in DENV serotypes and in some related flaviviruses.


Assuntos
Vírus da Dengue/fisiologia , Mutação de Sentido Incorreto , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Vírus da Dengue/genética , Teste de Complementação Genética , Glicosilação , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas não Estruturais Virais/genética
9.
Pak J Pharm Sci ; 22(1): 68-73, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19168424

RESUMO

An accurate, simple, reproducible and sensitive RP-HPLC method for the determination of bharangin has been developed and validated. The separation of bharangin and 2-nitroaniline (internal standard) was achieved on Supelcosil LC-18 (3micro, 150 x 4.6 mm i.d.) column using UV detection at 388 nm. The mobile phase was consisting of methanol and 0.01 M KH(2)PO(4) buffer (pH 3.0, adjusted with ortho-phosphoric acid) (75:25, % v/v). The linear range of detection for bharangin was found to be 10-50 ng/ml. Intra-and inter-days assay relative standard deviations were less than 3.21. The method has been successfully applied to the determination of bharangin in various crude extracts. The method has been shown to be linear, reproducible, specific, and rugged.


Assuntos
Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Tecnologia Farmacêutica/métodos , Verbenaceae , Cromatografia Líquida de Alta Pressão/normas , Ayurveda , Extratos Vegetais/química , Padrões de Referência , Reprodutibilidade dos Testes , Nódulos Radiculares de Plantas , Espectrofotometria Ultravioleta , Tecnologia Farmacêutica/normas , Verbenaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...